Optimal Design of Experiments for Hybrid Nonlinear Models, with Applications to Extended Michaelis–Menten Kinetics

Author:

Huang Yuanzhi,Gilmour Steven G.ORCID,Mylona Kalliopi,Goos Peter

Abstract

AbstractBiochemical mechanism studies often assume statistical models derived from Michaelis–Menten kinetics, which are used to approximate initial reaction rate data given the concentration level of a single substrate. In experiments dealing with industrial applications, however, there are typically a wide range of kinetic profiles where more than one factor is controlled. We focus on optimal design of such experiments requiring the use of multifactor hybrid nonlinear models, which presents a considerable computational challenge. We examine three different candidate models and search for tailor-made D- or weighted-A-optimal designs that can ensure the efficiency of nonlinear least squares estimation. We also study a compound design criterion for discriminating between two candidate models, which we recommend for design of advanced kinetic studies.Supplementary materials accompanying this paper appear on-line

Funder

University of Southampton

University of Antwerp

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3