Do Spatial Designs Outperform Classic Experimental Designs?

Author:

Hoefler Raegan,González-Barrios Pablo,Bhatta Madhav,Nunes Jose A. R.,Berro Ines,Nalin Rafael S.,Borges Alejandra,Covarrubias Eduardo,Diaz-Garcia Luis,Quincke Martin,Gutierrez LuciaORCID

Abstract

AbstractControlling spatial variation in agricultural field trials is the most important step to compare treatments efficiently and accurately. Spatial variability can be controlled at the experimental design level with the assignment of treatments to experimental units and at the modeling level with the use of spatial corrections and other modeling strategies. The goal of this study was to compare the efficiency of methods used to control spatial variation in a wide range of scenarios using a simulation approach based on real wheat data. Specifically, classic and spatial experimental designs with and without a two-dimensional autoregressive spatial correction were evaluated in scenarios that include differing experimental unit sizes, experiment sizes, relationships among genotypes, genotype by environment interaction levels, and trait heritabilities. Fully replicated designs outperformed partially and unreplicated designs in terms of accuracy; the alpha-lattice incomplete block design was best in all scenarios of the medium-sized experiments. However, in terms of response to selection, partially replicated experiments that evaluate large population sizes were superior in most scenarios. The AR1 $$\times $$ ×  AR1 spatial correction had little benefit in most scenarios except for the medium-sized experiments with the largest experimental unit size and low GE. Overall, the results from this study provide a guide to researchers designing and analyzing large field experiments.Supplementary materials accompanying this paper appear online.

Funder

Agricultural Research Service

Hatch Act Formula Grant

CAPES

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3