A systematic approach for product modelling and function integration to support adaptive redesign of product variants

Author:

Wong Foo ShingORCID,Wynn David C.ORCID

Abstract

AbstractWhen a product variant offers functionality that is high in demand, firms may decide to leverage that design to enhance other variants in their product line. This can be achieved by extracting functions and their realisations from one product variant and integrating them into another variant, resulting in a third product variant that has a new combination of functions and physical features. This article introduces a systematic approach called the Adaptive Redesign Method (ARM) to support this function integration process. The ARM is based on a new product model called the Detailed Design Model (DDM). In comparison to existing approaches, the DDM allows the architecture of an existing product to be modelled on a sufficiently detailed level to identify geometric features and parts that realise particular operating functions of a product. This detailed information provides a basis for systematic determination of the redesign activities needed to derive a new variant design, down to the detailed level of adding, removing and integrating specific parts and features. The main benefit is to assist with planning the redesign process while ensuring nothing is overlooked, which might be especially useful if the task is to be divided among several designers or if designers are not fully familiar with the designs at hand. A secondary benefit is to show how this type of redesign process can be decomposed into systematic steps, which could potentially reveal opportunities for computer support. The new approach has been developed and tested through reverse engineering studies of consumer products, confirming its applicability.

Funder

University of Auckland

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Architecture,Civil and Structural Engineering

Reference45 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3