A tripartite evolutionary game analysis of providing subsidies for pick-up/drop-off strategy in carpooling problem

Author:

Yan Zeyuan,Li Li,Zhao HuiORCID,Mualla Yazan,Yasar Ansar

Abstract

AbstractAlthough the pick-up/drop-off (PUDO) strategy in carpooling offers the convenience of short-distance walking for passengers during boarding and disembarking, there is a noticeable hesitancy among commuters to adopt this travel method, despite its numerous benefits. Here, this paper establishes a tripartite evolutionary game theory (EGT) model to verify the evolutionary stability of choosing the PUDO strategy of drivers and passengers and offering subsidies strategy of carpooling platforms in carpooling system. The model presented in this paper serves as a valuable tool for assessing the dissemination and implementation of PUDO strategy and offering subsidies strategy in carpooling applications. Subsequently, an empirical analysis is conducted to examine and compare the sensitivity of the parameters across various scenarios. The findings suggest that: firstly, providing subsidies to passengers and drivers, along with deductions for drivers through carpooling platforms, is an effective way to promote wider adoption of the PUDO strategy. Then, the decision-making process is divided into three stages: initial stage, middle stage, and mature stage. PUDO strategy progresses from initial rejection to widespread acceptance among drivers in the middle stage and, in the mature stage, both passengers and drivers tend to adopt it under carpooling platform subsidies; the factors influencing the costs of waiting and walking times, as well as the subsidies granted to passengers, are essential determinants that require careful consideration by passengers, drivers, and carpooling platforms when choosing the PUDO strategy. Our work provides valuable insight into the PUDO strategy’s applicability and the declared results provide implications for traffic managers and carpooling platforms to offer a suitable incentive.

Funder

National Natural Science Foundation of China

Shanghai Municipal Science and Technology

Shanghai Municipal Commission of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3