Task scheduling for transport and pick robots in logistics: a comparative study on constructive heuristics

Author:

Wang Hanfu,Chen WeidongORCID

Abstract

AbstractWe study the Transport and Pick Robots Task Scheduling (TPS) problem, in which two teams of specialized robots, transport robots and pick robots, collaborate to execute multi-station order fulfillment tasks in logistic environments. The objective is to plan a collective time-extended task schedule with the minimization of makespan. However, for this recently formulated problem, it is still unclear how to obtain satisfying results efficiently. In this research, we design several constructive heuristics to solve this problem based on the introduced sequence models. Theoretically, we give time complexity analysis or feasibility guarantees of these heuristics; empirically, we evaluate the makespan performance criteria and computation time on designed dataset. Computational results demonstrate that coupled append heuristic works better for the most cases within reasonable computation time. Coupled heuristics work better than decoupled heuristics prominently on instances with relative few pick robot numbers and large work zones. The law of diminishing marginal utility is also observed concerning the overall system performance and different transport-pick robot numbers.

Funder

national natural science foundation of china

national key r&d program of china

science and technology commission of shanghai municipality

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3