Land Use Spatial Optimization Using Accessibility Maps to Integrate Land Use and Transport in Urban Areas

Author:

Wang ZhongqiORCID,Han Qi,De Vries Bauke

Abstract

Abstract The scarcity of urban land resources requires a well-organized spatial layout of land use to better accommodate human activities, however, as a widely accepted concept, the integration of land use and transport is not given due consideration in land use spatial optimization (LUSO). This paper aims to integrate land use and transport in LUSO to support urban land use planning. Maximizing accessibility fitness, which follows the underlying logic between land use types and transport characteristics, is introduced into multi-objective land use spatial optimization (MOLUSO) modelling to address transport considerations, together with widely-used objectives such as maximizing compactness, compatibility, and suitability. The transport characteristics, in this study, are identified by driving accessibility, cycling accessibility, and walking accessibility. Accessibility maps, which quantify and visualize the spatial variances in accessibility fitness for different land use types, are developed based on the empirical results of the relationship between land use types and transport characteristics for LUSO and addressing policy issues. The 4-objective LUSO model and a corresponding non-dominated sorting genetic algorithm (NSGA-II) based optimization method constitute a prototype decision support system (DSS) for urban land use planning. Decision-makers (e.g., planning departments) can choose an ideal solution to accommodate urban development needs from a set of Pareto-optimal alternatives generated by the DSS. The approaches to creating accessibility maps and MOLUSO modelling are demonstrated by the case study of Eindhoven, the Netherlands. This study advocates limited changes to the current land use pattern in urban planning, and the LUSO emphasizes urban renewal and upgrading rather than new town planning.

Publisher

Springer Science and Business Media LLC

Subject

Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3