A hybrid multi-objective bi-level interactive fuzzy programming method for solving ECM-DWTA problem

Author:

Zhao LudaORCID,An Zongxu,Wang Bin,Zhang Yanqiu,Hu Yihua

Abstract

AbstractElectronic countermeasure (ECM) has become one of the most significant factors in modern warfare, in the course of combat, the electronic jamming allocation tasks need to be flexibly adjusted with the change of combat stage, which puts forward higher requirements for the modeling and solution method of this kind of problems. To solve the ECM dynamic weapon target assignment (ECM-DWTA) problem, a hybrid multi-target bi-level programming model is established. The upper level takes the sum of the electronic jamming effects in the whole combat stage as an optimization objective, and locally optimizes the ECM weapon (ECM-WP) assignment scheme in each stage. The lower level takes the importance expectation value of the target subjected to interference and combat consumption as double optimization objectives to globally optimize the ECM-WP assignment scheme. Focus on solving this complex model, a hybrid multi-objective bi-level interactive fuzzy programming algorithm (HMOBIF) is proposed, in this method, exponential membership function is used to describe the satisfaction degree of each level. When solving the multi-objective optimization problem composed of membership functions in the upper and lower levels, we use the MOEA/D algorithm to obtain the Pareto Front (PF) solution set, and then each solution in PF is evaluated and selected by the TOPSIS multi-criteria evaluation method. This local and global interactive optimization process of bi-level model is actually the process of executing observation-orientation-decision-action loop in practical combat. According to the current example, we conduct numerical simulation on the parameters in the model and obtain the parameter values suitable for the model solution. The computational experiments on different scale ECM-DWTA problems show that HMOBIF method is superior to four bi-level programming algorithms in terms of performance index, and can better solve ECM-DWTA problems.

Funder

National Natural Science Foundation of China

Military Postgraduate Funding Project

Hunan Province Postgraduate Scientific Research Innovation Project

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3