Abstract
AbstractCustomer retention is a major challenge in several business sectors and diverse companies identify the customer churn prediction (CCP) as an important process for retaining the customers. CCP in the telecommunication sector has become an essential need owing to a rise in the number of the telecommunication service providers. Recently, machine learning (ML) and deep learning (DL) models have begun to develop effective CCP model. This paper presents a new improved synthetic minority over-sampling technique (SMOTE) with optimal weighted extreme machine learning (OWELM) called the ISMOTE-OWELM model for CCP. The presented model comprises preprocessing, balancing the unbalanced dataset, and classification. The multi-objective rain optimization algorithm (MOROA) is used for two purposes: determining the optimal sampling rate of SMOTE and parameter tuning of WELM. Initially, the customer data involve data normalization and class labeling. Then, the ISMOTE is employed to handle the imbalanced dataset where the rain optimization algorithm (ROA) is applied to determine the optimal sampling rate. At last, the WELM model is applied to determine the class labels of the applied data. Extensive experimentation is carried out to ensure the ISMOTE-OWELM model against the CCP Telecommunication dataset. The simulation outcome portrayed that the ISMOTE-OWELM model is superior to other models with the accuracy of 0.94, 0.92, 0.909 on the applied dataset I, II, and III, respectively.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献