Code-based encryption techniques with distributed cluster head and energy consumption routing protocol

Author:

Jalasri M.,Lakshmanan L.

Abstract

AbstractFog computing and the Internet of Things (IoT) played a crucial role in storing data in the third-party server. Fog computing provides various resources to collect data by managing data security. However, intermediate attacks and data sharing create enormous security challenges like data privacy, confidentiality, authentication, and integrity issues. Various researchers introduce several cryptographic techniques; security is still significant while sharing data in the distributed environment. Therefore, in this paper, Code-Based Encryption with the Energy Consumption Routing Protocol (CBE-ECR) has been proposed for managing data security and data transmission protocols using keyed-hash message authentication. Initially, the data have been analyzed, and the distributed cluster head is selected, and the stochastically distributed energy clustering protocol is utilized for making the data transmission. Code-driven cryptography relies on the severity of code theory issues such as disorder demodulation and vibration required to learn equivalence. These crypto-systems are based on error codes to build a single-way function. The encryption technique minimizes intermediate attacks, and the data have protected all means of transmission. In addition to data security management, the introduced CBE-ECR reduces unauthorized access and manages the network lifetime successfully, leading to the effective data management of 96.17% and less energy consumption of 21.11% than other popular methods.The effectiveness of the system is compared to the traditional clustering techniques.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Privacy Protection Based on Packet Filtering for Home Internet-of-Things;2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2023-05-24

2. Vehicular Communication using Balanced Centralized and Decentralized Cluster Heads;International Journal of Circuits, Systems and Signal Processing;2022-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3