A federated pedestrian trajectory prediction model with data privacy protection

Author:

Ni Rongrong,Lu Yanan,Yang Biao,Yang Changchun,Liu XiaofengORCID

Abstract

AbstractPedestrian trajectory prediction is essential for self-driving vehicles, social robots, and intelligent monitoring applications. Diverse trajectory data is critical for high-accuracy trajectory prediction. However, the trajectory data is captured in scattered scenes, which can cause the problem of data island. Furthermore, artificial aggregation of trajectory data suffers from the risk of data leakage, ignoring the rule of privacy protection. We propose a multi-scene federated trajectory prediction (Fed-TP) method to solve the above problems. As our key contribution, a destination-oriented LSTM (Long Short-Term Memory)-based trajectory prediction (DO-TP) network is proposed in each scene to forecast future trajectories in an encoder-decoder manner. The independent training using trajectory data in each scene can prevent data leakage and achieves high privacy security. As another key contribution, a federated learning framework is introduced to break the scene limitation by conducting distributed collaborative training. The performance of different federated learning methods is compared on public datasets, including ETH, UCY, and Stanford Drone Dataset (SDD). Compared with FedAvg and FedProx, FedAtt is more suitable for pedestrian trajectory prediction. Experimental results demonstrate that the proposed method has better data privacy security than directly training on multiple scenes and superior prediction performance than training on a single scene.

Funder

National Postdoctoral General Fund

Postdoctoral Science Foundation of Jiangsu Province

General Project of Jiangsu Provincial Department of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3