Privacy-preserving sports data fusion and prediction with smart devices in distributed environment

Author:

Liu Ping,Li Xiang,Zang Bin,Diao Guoyan

Abstract

AbstractWith the rapid advancement of sports analytics and fan engagement technologies, the volume and diversity of physique data generated by smart devices across various distributed sports platforms have grown significantly. Extracting insights and enhancing fan experiences from such data offer considerable benefits. Yet, this process unveils two primary challenges. Firstly, efficiently utilizing the vast datasets in sports analytics is daunting due to the complex nature of the sports industry. Secondly, the data collected from diverse sources and stored in distributed platforms contain sensitive information like fan preferences and athlete performance metrics, posing risks of privacy breaches. To address these challenges, we leverage an advanced Locality-Sensitive Hashing technique, known as PSDFP$$_{\text {ALSH}}$$ ALSH , tailored for the sports domain. This paper presents a new privacy-preserving method for sports data fusion and prediction in distributed environments, utilizing enhanced Locality-Sensitive Hashing to protect sensitive information while maintaining high data utility. Through extensive experimentation, our approach demonstrates superior performance over existing methods in terms of Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and computational efficiency.

Publisher

Springer Science and Business Media LLC

Reference47 articles.

1. Dai H, Yu J, Li M, Wang W, Liu AX, Ma J, Qi L, Chen G (2023) Bloom filter with noisy coding framework for multi-set membership testing. IEEE Trans Knowl Data Eng 35(7):6710–6724

2. Gu R, Zhang K, Xu Z, Che Y, Fan B, Hou H, Dai H, Yi L, Ding Y, Chen G, et al (2022) Fluid: dataset abstraction and elastic acceleration for cloud-native deep learning training jobs. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), IEEE, pp 2182–2195

3. Kong L, Li G, Rafique W, Shen S, He Q, Khosravi MR, Wang R, Qi L (2022) Time-aware missing healthcare data prediction based on arima model. IEEE/ACM Trans Comput Biol Bioinforma. https://doi.org/10.1109/TCBB.2022.3205064

4. Dai H, Wang X, Lin X, Gu R, Shi S, Liu Y, Dou W, Chen G (2021) Placing wireless chargers with limited mobility. IEEE Trans Mob Comput 22(6):3589–3603

5. Gu R, Chen Y, Liu S, Dai H, Chen G, Zhang K, Che Y, Huang Y (2021) Liquid: intelligent resource estimation and network-efficient scheduling for deep learning jobs on distributed GPU clusters. IEEE Trans Parallel Distrib Syst 33(11):2808–2820

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3