Reinforcement learning for the traveling salesman problem with refueling

Author:

Ottoni André L. C.ORCID,Nepomuceno Erivelton G.,Oliveira Marcos S. de,Oliveira Daniela C. R. de

Abstract

AbstractThe traveling salesman problem (TSP) is one of the best-known combinatorial optimization problems. Many methods derived from TSP have been applied to study autonomous vehicle route planning with fuel constraints. Nevertheless, less attention has been paid to reinforcement learning (RL) as a potential method to solve refueling problems. This paper employs RL to solve the traveling salesman problem With refueling (TSPWR). The technique proposes a model (actions, states, reinforcements) and RL-TSPWR algorithm. Focus is given on the analysis of RL parameters and on the refueling influence in route learning optimization of fuel cost. Two RL algorithms: Q-learning and SARSA are compared. In addition, RL parameter estimation is performed by Response Surface Methodology, Analysis of Variance and Tukey Test. The proposed method achieves the best solution in 15 out of 16 case studies.

Funder

The authors are grateful to CAPES, CNPq/INERGE, FAPEMIG, UFSJ and UFRB

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal recharge sequencing in multi-AGV systems: A mixed ILP approach;Computers & Industrial Engineering;2024-10

2. AutoRL-Sim: Automated Reinforcement Learning Simulator for Combinatorial Optimization Problems;Modelling;2024-08-26

3. The pollution traveling salesman problem with refueling;Computers & Operations Research;2024-07

4. Green Machine Learning: Analysing the Energy Efficiency of Machine Learning Models;2024 35th Irish Signals and Systems Conference (ISSC);2024-06-13

5. Deep Reinforcement Learning Approach for UAV Search Path Planning In Discrete Time and Space;2024 International Wireless Communications and Mobile Computing (IWCMC);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3