Integrated Q-Learning with Firefly Algorithm for Transportation Problems

Author:

Pratiba K R,Ridhanya S,Ridhisha J,Hemashree P

Abstract

The study addresses the optimization of land transportation in the context of vehicle routing, a critical aspect of transportation logistics. The specific objectives are to employ various meta-heuristic optimization techniques, including Genetic Algorithms (GA), Ant Colony Optimization (ACO), Firefly Algorithm (FA), Particle Swarm Optimization (PSO), and Q-Learning reinforcement algorithm, to find the optimal solutions for vehicle routing problems. The primary aim is to enhance the efficiency and effectiveness of land transportation systems by minimizing factors such as travel distance or time while adhering to constraints. The study evaluates the advantages and limitations of each algorithm and introduces a novel-based approach that integrates Q-learning with the FA. The results demonstrate that these meta-heuristic optimization techniques offer promising solutions for complex vehicle routing challenges. The integrated Q-learning with Firefly Algorithm (iQLFA) emerges as the most successful approach among them, showcasing its potential to significantly improve transportation optimization outcomes.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3