Abstract
AbstractThe key job here in the presented work is to investigate the performance of Generalized Ant Colony Optimizer (GACO) model in order to evolve the shape of three dimensional free-form Non Uniform Rational B-Spline (NURBS) curve using stereo (two) views. GACO model is a blend of two well known meta-heuristic optimization algorithms known as Simple Ant Colony and Global Ant Colony Optimization algorithms. Basically, the work talks about the solution of NURBS-fitting based reconstruction process. Therefore, GACO model is used to optimize the NURBS parameters (control points and weights) by minimizing the weighted least-square errors between the data points and the fitted NURBS curve. The algorithm is applied by first assuming some pre-fixed values of NURBS parameters. The experiments clearly show that the optimization procedure is a better option in a case where good initial locations of parameters are selected. A detailed experimental analysis is given in support of our algorithm. The implemented error analysis shows that the proposed methodology perform better as compared to the conventional methods.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献