CARNet: Cascade attentive RefineNet for multi-lesion segmentation of diabetic retinopathy images

Author:

Guo YanfeiORCID,Peng Yanjun

Abstract

AbstractDiabetic retinopathy is the leading cause of blindness in working population. Lesion segmentation from fundus images helps ophthalmologists accurately diagnose and grade of diabetic retinopathy. However, the task of lesion segmentation is full of challenges due to the complex structure, the various sizes and the interclass similarity with other fundus tissues. To address the issue, this paper proposes a cascade attentive RefineNet (CARNet) for automatic and accurate multi-lesion segmentation of diabetic retinopathy. It can make full use of the fine local details and coarse global information from the fundus image. CARNet is composed of global image encoder, local image encoder and attention refinement decoder. We take the whole image and the patch image as the dual input, and feed them to ResNet50 and ResNet101, respectively, for downsampling to extract lesion features. The high-level refinement decoder uses dual attention mechanism to integrate the same-level features in the two encoders with the output of the low-level attention refinement module for multiscale information fusion, which focus the model on the lesion area to generate accurate predictions. We evaluated the segmentation performance of the proposed CARNet on the IDRiD, E-ophtha and DDR data sets. Extensive comparison experiments and ablation studies on various data sets demonstrate the proposed framework outperforms the state-of-the-art approaches and has better accuracy and robustness. It not only overcomes the interference of similar tissues and noises to achieve accurate multi-lesion segmentation, but also preserves the contour details and shape features of small lesions without overloading GPU memory usage.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3