A two-stage stacked-based heterogeneous ensemble learning for cancer survival prediction

Author:

Yan Fangzhou,Feng YiORCID

Abstract

AbstractCancer survival prediction is one of the three major tasks of cancer prognosis. To improve the accuracy of cancer survival prediction, in this paper, we propose a priori knowledge- and stability-based feature selection (PKSFS) method and develop a novel two-stage heterogeneous stacked ensemble learning model (BQAXR) to predict the survival status of cancer patients. Specifically, PKSFS first obtains the optimal feature subsets from the high-dimensional cancer datasets to guide the subsequent model construction. Then, BQAXR seeks to generate five high-quality heterogeneous learners, among which the shortcomings of the learners are overcome by using improved methods, and integrate them in two stages through the stacked generalization strategy based on optimal feature subsets. To verify the merits of PKSFS and BQAXR, this paper collected the real survival datasets of gastric cancer and skin cancer from the Surveillance, Epidemiology, and End Results (SEER) database of the National Cancer Institute, and conducted extensive numerical experiments from different perspectives based on these two datasets. The accuracy and AUC of the proposed method are 0.8209 and 0.8203 in the gastric cancer dataset, and 0.8336 and 0.8214 in the skin cancer dataset. The results show that PKSFS has marked advantages over popular feature selection methods in processing high-dimensional datasets. By taking full advantage of heterogeneous high-quality learners, BQAXR is not only superior to mainstream machine learning methods, but also outperforms improved machine learning methods, which indicates can effectively improve the accuracy of cancer survival prediction and provide a reference for doctors to make medical decisions.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3