Advancements in skin cancer classification: a review of machine learning techniques in clinical image analysis

Author:

Yang GuangORCID,Luo Suhuai,Greer Peter

Abstract

AbstractEarly detection of skin cancer from skin lesion images using visual inspection can be challenging. In recent years, research in applying deep learning models to assist in the diagnosis of skin cancer has achieved impressive results. State-of-the-art techniques have shown high accuracy, sensitivity and specificity compared with dermatologists. However, the analysis of dermoscopy images with deep learning models still faces several challenges, including image segmentation, noise filtering and image capture environment inconsistency. After making the introduction to the topic, this paper firstly presents the components of machine learning-based skin cancer diagnosis. It then presents the literature review on the current advance in machine learning approaches for skin cancer classification, which covers both the traditional machine learning approaches and deep learning approaches. The paper also presents the current challenges and future directions for skin cancer classification using machine learning approaches.

Funder

The University of Newcastle

Publisher

Springer Science and Business Media LLC

Reference100 articles.

1. Siegel RL, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29. https://doi.org/10.3322/caac.20138

2. Australian Bureau of Statistics (2019) Causes of death, Australia [internet]. Canberra: ABS. Available from: https://www.abs.gov.au/statistics/health/causes-death/causes-death-australia/2019. Accessed 1 Nov 2022

3. Street W (2019) Cancer facts & figures. American Cancer Society, Atlanta, GA. Available from: http://cancerstatisticscenter.cancer.org. Accessed 1 Nov 2022

4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

5. Siegel RL, Miller KD, Jemal A (2019 Jan) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3