Chinese Named Entity Recognition method based on multi-feature fusion and biaffine

Author:

Ke XiaohuaORCID,Wu Xiaobo,Ou Zexian,Li Binglong

Abstract

AbstractChinese Named Entity Recognition (CNER) focuses on precisely identifying predefined structural categories in unstructured Chinese text. Most existing CNER models do not consider the unique glyph and pinyin features of Chinese characters, but the rich semantic features hidden behind these features have a good effect on enhancing the judgment ability of language models. At the same time, it is difficult to identify the boundaries of Chinese nested entities, and accurately identifying the boundaries of entities within nested entities is also a difficult problem to solve. We propose a CNER method based on multi-feature fusion technology and biaffine mechanism to address the above issues: In the input representation layer, integrate the glyph and pinyin features of Chinese characters together, intuitively capturing the semantics of Chinese characters. Furthermore, biaffine mechanism has been introduced to provide a comprehensive view of the input on a global scale. This mechanism effectively converts the task of entity recognition into a problem of assigning scores to spans, hence enhancing the precision of identifying entity borders. In order to evaluate the efficacy of the model, a series of experiments were done on three Chinese entity recognition datasets: Resume, MSRA, and People Daily. The experimental results show that the solid boundary can be identified more accurately, and the F1 values of 96.49%, 96.26% and 96.19% are obtained respectively, which has a better recognition effect than the baseline model.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3