Differential evolution-based transfer rough clustering algorithm

Author:

Zhao FengORCID,Wang Chaofei,Liu HanqiangORCID

Abstract

AbstractDue to well processing the uncertainty in data, rough clustering methods have been successfully applied in many fields. However, when the capacity of the available data is limited or the data are disturbed by noise, the rough clustering algorithms always cannot effectively explore the structure of the data. Furthermore, rough clustering algorithms are usually sensitive to the initialized cluster centers and easy to fall into local optimum. To resolve the problems mentioned above, a novel differential evolution-based transfer rough clustering (DE-TRC) algorithm is proposed in this paper. First, transfer learning mechanism is introduced into rough clustering and a transfer rough clustering framework is designed, which utilizes the knowledge from the related domain to assist the clustering task. Then, the objective function of the transfer rough clustering algorithm is optimized by using the differential evolution algorithm to enhance the robustness of the algorithm. It can overcome the sensitivity to initialized cluster centers and meanwhile achieve the global optimal clustering. The proposed algorithm is validated on different synthetic and real-world datasets. Experimental results demonstrate the effectiveness of the proposed algorithm in comparison with both traditional rough clustering algorithms and other state-of-the-art clustering algorithms.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3