A robust multi-view knowledge transfer-based rough fuzzy C-means clustering algorithm

Author:

Zhao FengORCID,Yang YujieORCID,Liu HanqiangORCID,Wang Chaofei

Abstract

AbstractRough fuzzy clustering algorithms have received extensive attention due to the excellent ability to handle overlapping and uncertainty of data. However, existing rough fuzzy clustering algorithms generally consider single view clustering, which neglects the clustering requirements of multiple views and results in the failure to identify diverse data structures in practical applications. In addition, rough fuzzy clustering algorithms are always sensitive to the initialized cluster centers and easily fall into local optimum. To solve the above problems, the multi-view and transfer learning are introduced into rough fuzzy clustering and a robust multi-view knowledge transfer-based rough fuzzy c-means clustering algorithm (MKT-RFCCA) is proposed in this paper. First, multiple distance metrics are adopted as multiple views to effectively recognize different data structures, and thus positively contribute to clustering. Second, a novel multi-view transfer-based rough fuzzy clustering objective function is constructed by using fuzzy memberships as transfer knowledge. This objective function can fully explore and utilize the potential information between multiple views and characterize the uncertainty information. Then, combining the statistical information of color histograms, an initialized centroids selection strategy is presented for image segmentation to overcome the instability and sensitivity caused by the random distribution of the initialized cluster centers. Finally, to reduce manual intervention, a distance-based adaptive threshold determination mechanism is designed to determine the threshold parameter for dividing the lower approximation and boundary region of rough fuzzy clusters during the iteration process. Experiments on synthetic datasets, real-world datasets, and noise-contaminated Berkeley and Weizmann images show that MKT-RFCCA obtains favorable clustering results. Especially, it provides satisfactory segmentation results on images with different types of noise and preserves more specific detail information of images.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3