Static–dynamic features and hybrid deep learning models based spoof detection system for ASV

Author:

Mittal Aakshi,Dua MohitORCID

Abstract

AbstractDetection of spoof is essential for improving the performance of current scenario of Automatic Speaker Verification (ASV) systems. Empowerment to both frontend and backend parts can build the robust ASV systems. First, this paper discuses performance comparison of static and static–dynamic Constant Q Cepstral Coefficients (CQCC) frontend features by using Long Short Term Memory (LSTM) with Time Distributed Wrappers model at the backend. Second, it performs comparative analysis of ASV systems built using three deep learning models LSTM with Time Distributed Wrappers, LSTM and Convolutional Neural Network at backend and using static–dynamic CQCC features at frontend. Third, it discusses implementation of two spoof detection systems for ASV by using same static–dynamic CQCC features at frontend and different combination of deep learning models at backend. Out of these two, the first one is a voting protocol based two-level spoof detection system that uses CNN, LSTM model at first level and LSTM with Time Distributed Wrappers model at second level. The second one is a two-level spoof detection system with user identification and verification protocol, which uses LSTM model for user identification at first level and LSTM with Time Distributed Wrappers for verification at the second level. For implementing the proposed work, a variation in ASVspoof 2019 dataset has been used to introduce all types of spoofing attacks such as Speech Synthesis (SS), Voice Conversion (VC) and replay in single set of dataset. The results show that, at frontend, static–dynamic CQCC feature outperform static CQCC features and at the backend, hybrid combination of deep learning models increases accuracy of spoof detection systems.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3