Publisher
Springer Science and Business Media LLC
Reference82 articles.
1. Algrbaa, H. A. (2023). Speaker recognition from speech using Gaussian mixture model (GMM) and (MFCC)
2. Anoop, C. S., & Ramakrishnan, A. G. (2021). CTC-based end-to-end ASR for the low resource Sanskrit language with spectrogram augmentation. In 2021 national conference on communications (NCC) (pp. 1–6). IEEE.
3. Bhogale, K., Raman, A., Javed, T., Doddapaneni, S., Kunchukuttan, A., Kumar, P., & Khapra, M. M. (2023). Effectiveness of mining audio and text pairs from public data for improving ASR systems for low-resource languages. In ICASSP 2023–2023 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 1–5). IEEE.
4. Billa, J. (2018). ISI ASR system for the low resource speech recognition challenge for Indian languages. In Proceedings of the annual conference of the international speech community association (INTERSPEECH), (vol. 2018 - September, pp. 3207–3211).
5. Birkenes, O., Matsui, T., Tanabe, K., Siniscalchi, S. M., Myrvoll, T. A., & Johnsen, M. H. (2009). Penalized logistic regression with HMM log-likelihood regressors for speech recognition. IEEE Transactions on Audio, Speech and Language Processing, 18(6), 1440–1454.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献