An integrated differential evolution of multi-population based on contribution degree

Author:

Wang Yufeng,Yang HaoORCID,Xu Chunyu,Zeng Yunjie,Xu Guoqing

Abstract

Abstract The differential evolution algorithm based on multi-population mainly improves its performance through mutation strategy and grouping mechanism. However, each sub-population plays a different role in different periods of iterative evolution. If each sub-population is assigned the same computing resources, it will waste a lot of computing resources. In order to rationally distribute computational resources, an integrated differential evolution of multi-population based on contribution degree (MDE-ctd) is put forth in this work. In MDE-ctd, the whole population is divided into three sub-populations according to different update strategies: archival, exploratory, and integrated sub-populations. MDE-ctd dynamically adjusts computing resources according to the contribution degree of each sub-population. It can effectively use computing resources and speed up convergence. In the updating process of integrated sub-populations, a mutation strategy pool and two-parameter value pools are used to maintain population diversity. The experimental results of CEC2005 and CEC2014 benchmark functions show that MDE-ctd outperforms other state-of-art differential evolution algorithms based on multi-population, especially when it deals with highly complex optimization problems. Graphical abstract An integrated differential evolution of multi-population based on contribution degree

Funder

Henan Science and Technology Department

Research and Practice Project of Research Teaching Reform in Henan Undergraduate University

Henan Provincial Science and Technology Research Project

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3