An effective co-evolutionary algorithm based on artificial bee colony and differential evolution for time series predicting optimization

Author:

Yang YunORCID,Duan Zongtao

Abstract

AbstractNon-linear model optimization for predicting time series is a challenge problem. In Intelligent Transportation Systems (ITS) application, the indispensable short-term traffic flow prediction with big data makes the problem worst. To improve the prediction accuracy and ensure real-time performance in the big data environment, we propose a novel co-evolutionary artificial bee colony (ABC) improved by differential evolution (DE) optimization algorithm combined with a traffic flow predicting model trained by extreme learning machine (ELM) neural network. The proposed model can inherit the better generalization performance and the less training time consumption of the standard ELM, and can achieve a more balanced search strategy with the optimized weights and biases to overcome the random initialization deficiency of the typical ELM, and successfully obtain higher prediction accuracy compared with state-of-the-art methods. To verify the efficiency of the proposed model, we apply it to Lozi and Tent chaotic time series simulations and measured traffic flow time series experiments. Simulation and experimental results demonstrate that the proposed model has superior performance and competitive computational efficiency.

Funder

Key research item for the industry of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3