Selective quantum ensemble learning inspired by improved AdaBoost based on local sample information

Author:

Niu Xufeng,Ma Wenping

Abstract

AbstractIn ensemble learning, random subspace technology not only easily loses some important features but also easily produces some redundant subspaces, inevitably leading to the decline of ensemble learning performance. In order to overcome the shortcomings, we propose a new selective quantum ensemble learning model inspired by improved AdaBoost based on local sample information (SELA). Firstly, SELA combines information entropy and random subspace to ensure that the important features of the classification task in each subspace are preserved. Then, we select the base classifier that can balance accuracy and diversity among a group of base classifiers generated based on local AdaBoost in each iteration. Finally, we utilize the quantum genetic algorithm to search optimal weights for base learners in the label prediction process. We use UCI datasets to analyze the impact of important parameters in SELA on classification performance and verify that SELA is usually superior to other competitive algorithms.

Funder

Key Industry Innovation Chain Project of Shaanxi Provincial Science and the Technology Department

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3