Multi-objective particle swarm optimization with random immigrants

Author:

Ünal Ali NadiORCID,Kayakutlu Gülgün

Abstract

AbstractComplex problems of the current business world need new approaches and new computational algorithms for solution. Majority of the issues need analysis from different angles, and hence, multi-objective solutions are more widely used. One of the recently well-accepted computational algorithms is Multi-objective Particle Swarm Optimization (MOPSO). This is an easily implemented and high time performance nature-inspired approach; however, the best solutions are not found for archiving, solution updating, and fast convergence problems faced in certain cases. This study investigates the previously proposed solutions for creating diversity in using MOPSO and proposes using random immigrants approach. Application of the proposed solution is tested in four different sets using Generational Distance, Spacing, Error Ratio, and Run Time performance measures. The achieved results are statistically tested against mutation-based diversity for all four performance metrics. Advantages of this new approach will support the metaheuristic researchers.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference50 articles.

1. Agrawal S, Dashora Y, Tiwari MK, Son YJ (2008) Interactive particle swarm: a pareto-adaptive metaheuristic to multiobjective optimization. IEEE Trans Syst Man Cybern Part A Syst Hum 38(2):258–277

2. Al Moubayed N, Petrovski A, McCall J (2010) A novel smart multi-objective particle swarm optimisation using decomposition. Springer, Berlin Heidelberg, pp 1–10

3. Baltar AM, Fontane DG (2006) A generalized multiobjective particle swarm optimization solver for spreadsheet models: application to water quality. Hydrol Days 1–12

4. Coello CAC, Lechuga MS (2002) Mopso: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC ’02, vol 2, pp 1051–1056

5. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3