Improved multi objective particle swarm optimization based reactive power optimization for ensuring voltage security of power systems

Author:

Hilawie AhaduORCID,Shewarega Fekadu

Abstract

Abstract In this study an improved multi objective particle swarm optimization (IMOPSO) algorithm is proposed for power system reactive power optimization with the objective of ensuring voltage security. The multi objective particle swarm optimization (MOPSO) is improved by introducing an adapted binary crossover (ABX) to the new positions obtained by the basic particle swarm optimization (PSO) algorithm. Additionally, diversity maintenance strategy is added to the algorithm by employing crowding distance (CD) calculation. The developed algorithm is tested and compared with standard MOPSO and non dominated sorting genetic algorithm (NASGA II). The comparison is made based on the degree of closeness to the true pareto front, as measured by the inverted generational distance (IGD), and based on diversity, as measured by the CDs . The test is made using ZDT1, ZDT2, and ZDT3 test functions. The IMOPSO showed improved performance over MOPSO and NASGA II algorithms in terms of convergence to the true pareto front (PF) and in terms of the speed of convergence as well as in maintaining diversity. The algorithm is then implemented to reactive power optimization of IEEE 14 bus test system. For the implementation purpose, the voltage stability and voltage deviation components of voltage security are formulated as a multi objective functions. The implementation has resulted diverse options of optimal settings of reactive power controlling parameters. The optimal settings proved to produce an improved voltage security as measured in terms of voltage deviation and voltage stability.

Publisher

IOP Publishing

Subject

General Engineering

Reference50 articles.

1. Power system voltage stability and security assessment;Bian;Electr. Power Syst. Res.,1994

2. Dynamic voltage collapse prediction in power systems using power transfer stability index;Nizam,2006

3. Integrated energy system security region: concepts, methods, and implementations;Jiang;Appl. Energy,2021

4. Increase power transfer capability and controlling line power flow in power system installed the FACTS;Komoni,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3