A conjugate gradient-assisted multi-objective evolutionary algorithm for fluence map optimization in radiotherapy treatment

Author:

Cao Ruifen,Si Langchun,Li Xuesong,Guang Yaopei,Wang Chao,Tian Ye,Pei Xi,Zhang Xingyi

Abstract

AbstractIntensity-modulated radiotherapy (IMRT) is one of the most applied techniques for cancer radiotherapy treatment. The fluence map optimization is an essential part of IMRT plan designing, which has a significant impact on the radiotherapy treatment effect. In fact, the treatment planing of IMRT is an inverse multi-objective optimization problem. Existing approaches of solving the fluence map optimization problem (FMOP) obtain a satisfied treatment plan via trying different coupling weights, the optimization process needs to be conducted many times and the coupling weight setting is completely based on the experience of a radiation physicist. For fast obtaining diverse high-quality radiotherapy plans, this paper formulates the FMOP into a three-objective optimization problem, and proposes a conjugate gradient-assisted multi-objective evolutionary algorithm (CG-MOEA) to solve it. The proposed algorithm does not need to set the coupling weights and can produce the diverse radiotherapy plans within a single run. Moreover, the convergence speed is further accelerated by an adaptive local search strategy based on the conjugate-gradient method. Compared with five state-of-the-art multi-objective evolutionary algorithms (MOEAs), the proposed CG-MOEA can obtain the best hypervolume (HV) values and dose–volume histogram (DVH) performance on five clinical cases in cancer radiotherapy. Moreover, the proposed algorithm not only obtains the more optimal solution than traditional method used to solve the FMOP, but also can find diverse Pareto solution set which can be provided to radiation physicist to select the best treatment plan. The proposed algorithm outperforms dose-volume histogram state-of-the-art multi-objective evolutionary algorithms and traditional method for FMOP on five clinical cases in cancer radiotherapy.

Funder

National Major Science and Technology Projects of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3