The Scatter Search Based Algorithm for Beam Angle Optimization in Intensity-Modulated Radiation Therapy

Author:

Ghanbarzadeh Ali1ORCID,Pouladian Majid2ORCID,Shabestani Monfared Ali3,Mahdavi Seied Rabi4

Affiliation:

1. Department of Medical Radiation Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran

2. Department of Biomedical Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran

3. Cancer Research Center, Medical Physics Department, Babol University of Medical Sciences, Babol, Iran

4. Radiobiology Research Center, Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran

Abstract

This article introduces a new framework for beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) using the Scatter Search Based Algorithm. The potential benefits of plans employing the coplanar optimized beam sets are also examined. In the proposed beam angle selection algorithm, the problem is solved in two steps. Initially, the gantry angles are selected using the Scatter Search Based Algorithm, which is a global optimization method. Then, for each beam configuration, the intensity profile is calculated by the conjugate gradient method to score each beam angle set chosen. A simulated phantom case with obvious optimal beam angles was used to benchmark the validity of the presented algorithm. Two clinical cases (TG-119 phantom and prostate cases) were examined to prepare a dose volume histogram (DVH) and determine the dose distribution to evaluate efficiency of the algorithm. A clinical plan with the optimized beam configuration was compared with an equiangular plan to determine the efficiency of the proposed algorithm. The BAO plans yielded significant improvements in the DVHs and dose distributions compared to the equispaced coplanar beams for each case. The proposed algorithm showed its potential to effectively select the beam direction for IMRT inverse planning at different tumor sites.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3