Predicting vacant parking space availability zone-wisely: a hybrid deep learning approach

Author:

Feng Yajing,Xu Yingying,Hu QianORCID,Krishnamoorthy Sujatha,Tang Zhenzhou

Abstract

AbstractPrecise prediction on vacant parking space (VPS) information plays a vital role in intelligent transportation systems for it helps drivers to find the parking space quickly to reduce unnecessary waste of time and excessive environmental pollution. By analyzing the historical zone-wise VPS data, we find that for the number of VPSs, there is not only a solid temporal correlation within each parking lot, but also an obvious spatial correlation among different parking lots. Given this, this paper proposes a hybrid deep learning framework, known as the dConvLSTM-DCN (dual Convolutional Long Short-Term Memory with Dense Convolutional Network), to make short-term (within 30 min) and long-term (over 30 min) predictions on the VPS availability zone-wisely. Specifically, the temporal correlations of different time scales, namely the 5-min and daily-wise temporal correlations of each parking lot, and the spatial correlations among different parking lots can be effectively captured by the two parallel ConvLSTM components, and meanwhile, the dense convolutional network is leveraged to further improve the propagation and reuse of features in the prediction process. Besides, a two-layer linear network is used to extract the meta-info features to promote the prediction accuracy. For long-term predictions, two methods, namely the direct and iterative prediction methods, are developed. The performance of the prediction model is extensively evaluated with practical data collected from nine public parking lots in Santa Monica. The results show that the dConvLSTM-DCN framework can achieve considerably high accuracy in both short-term and long-term predictions.

Funder

fundamental scientific research project of wenzhou city

Natural Science Foundation of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3