Macroaggregates of loam in sandy soil show little influence on maize growth, due to local adaptations of root architecture to soil heterogeneity

Author:

Lippold EvaORCID,Lucas Maik,Fahrenkampf Toni,Schlüter Steffen,Vetterlein Doris

Abstract

Abstract Aims Root hairs and lateral growth are root traits among many which enable plants to adapt to environmental conditions. How different traits are coordinated under local heterogeneity, especially when two or more environmental factors vary in space, is currently poorly understood. We investigated the effect of heterogeneity on root system architecture of maize in response to the presence of loamy macroaggregates, which come along with both, increased penetration resistance and nutrient availability, i.e., two important environmental factors shaping root system architecture. The comparison between a mutant with defective root hairs and the corresponding wild type made it possible to investigate the importance of root hairs in the adaptation strategies of plant roots to these factors. Methods Changes in root growth and root distribution with respect to macroaggregates were investigated using X-ray computed tomography. The wild-type of Zea mays L. was compared with the root hair defective mutant (rth3) to investigate the importance of root hairs in addition to adaption of root architecture. Results The presence of aggregates lead to increased root length and branch densities around aggregates, while only a few roots were able to grow into them. Thereby, wildtype and rth3 were influenced in the same way. Aboveground biomass, however, was not affected by the presence of macroaggregates, as compared to controls with homogenously distributed loam. Conclusions Macroaggregation of loam in sandy soil shows little influence on maize growth, due to local adaptations of root architecture to the heterogeneity in nutrient availability and penetration resistance caused by the aggregates.

Funder

Helmholtz-Zentrum für Umweltforschung GmbH - UFZ

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3