Role of root hair elongation in rhizosheath aggregation and in the carbon flow into the soil

Author:

Teixeira Pedro Paulo C.ORCID,Trautmann Svenja,Buegger Franz,Felde Vincent J. M. N. L.,Pausch Johanna,Müller Carsten W.,Kögel-Knabner Ingrid

Abstract

Abstract One of the most prominent changes in the rhizospheric soil structure is associated with the formation of a strongly bound soil layer in the surroundings of the root, which is named rhizosheath. In this study, we investigated how root hair elongation, a ubiquitous root morphological trait, affect the stability of rhizosheath aggregates. Using 13CO2 pulse labeling, we tracked the fate of root-derived 13C inputted into the rhizosheath of two Zea mays L. genotypes with contrasting root hair elongation: a mutant with root hair defective elongation (rth3) and a corresponding wild type (WT). In addition, we also investigated the differences between two 13CO2 labeling approaches (single vs. multiple pulse labeling) in the distribution of 13C in the rhizosheath aggregates. We were able to demonstrate that the rhizosheath aggregate stability and the resulting aggregate size distribution follows the same mechanisms irrespective of the root hair elongation. This result reinforces the assumption that other soil properties are more decisive for the soil structure formation in the rhizosheath in comparison to root hair elongation. The majority of recently deposited root-derived C (57%) was found in the macroaggregates. Increasing the number of pulses (multiple pulse labeling approach) resulted in a higher 13C enrichment of the rhizosheath aggregates fractions in comparison to the application of a single pulse. While both labeling approaches resulted in a similar distribution of 13C in the rhizosheath aggregates, the higher enrichment given by multiple pulse labeling allowed the separation of significant differences between the genotypes in plant C allocation in the rhizosheath.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Agronomy and Crop Science,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3