Root growth and belowground interactions in spring wheat /faba bean intercrops

Author:

Hadir SofiaORCID,Döring Thomas F.,Justes Eric,Demie Dereje T.,Paul Madhuri,Legner Nicole,Kemper Roman,Gaiser Thomas,Weedon Odette,Ewert Frank,Seidel Sabine J.

Abstract

Abstract Background and aims Intercrops offer multiple advantages over sole crops. The aim of our study was to characterize root growth and interactions in spring wheat/faba bean intercrops to better understand belowground interactions that govern resource capture. Materials and methods A field experiment was conducted with one faba bean cultivar and two spring wheat cultivars sown at three sowing densities, defining three intercropping designs. Destructive root coring was conducted (0–100 cm) in the intercrops and sole crops at two development stages. FTIR spectroscopy was used to discriminate the species’ root masses. The plant-plant interaction index was calculated to represent the belowground interactions. Results A negative impact of intercropping on total root mass was observed in the treatment with high sowing density in both stages. For the fully and partial replacement design treatments, plant-plant facilitation was more pronounced than competition in all layers. Competition dominated root growth in the treatment with high sowing density in both stages. Lower sowing densities encouraged deep root growth of wheat (both cultivars) in intercropping. The early root growth in depth and in density of one spring wheat cultivar impacted negatively faba bean root growth. Intercropping resulted in a grain yield advantage in both fully and only one partial replacement design treatment. Conclusion In the intercrops, total root mass and plant-plant interactions were affected more by sowing density than by the spring wheat cultivar. Understanding the effect of sowing density on root growth in intercropping can help to support the design of sustainable intercropping systems.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3