Abstract
Abstract
Aims
An essential task of agricultural systems is to improve internal phosphorus (P) recycling. Cover crops and tillage reduction can increase sustainability, but it is not known whether stimulation of the soil microbial community can increase the availability of soil organic P pools.
Methods
In a field experiment in southwest Germany, the effects of a winter cover crop mixture (vs. bare fallow) and no-till (vs. non-inversion tillage) on microbial P-cycling were assessed with soybean as the main crop. Microbial biomass, phospholipid fatty acids (PLFAs), P cycling enzymes, and carbon-substrate use capacity were linked for the first time with the lability of organic P pools measured by enzyme addition assays (using phosphodiesterase, non-phytase-phosphomonoesterase and fungal phytase).
Results
Microbial phosphorus, phosphatase, and fatty acids increased under cover crops, indicating an enhanced potential for organic P cycling. Enzyme-stable organic P shifted towards enzyme-labile organic P pools. Effects of no-till were weaker, and a synergy with cover crops was not evident.
Conclusions
In this experiment, cover crops were able to increase the microbially mediated internal P cycling in a non-P-limited, temperate agroecosystems.
Funder
H2020 European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Soil Science
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献