Grazing cover crops increases soil microbial biomass in Texas semiarid ecoregion

Author:

Mubvumba Partson1ORCID,DeLaune Paul B.2,Gentry Terry J.3

Affiliation:

1. USDA‐ARS Crop Production Systems Research Unit Stoneville Mississippi USA

2. Texas A&M AgriLife Research Vernon Texas USA

3. Soil & Crop Sciences Department Texas A&M University College Station Texas USA

Abstract

AbstractIntegrated crop‐livestock systems (ICLS) bring diversity to agricultural systems, enhancing soil ecosystem services, food production, and environmental sustainability. Resource utilization efficiency practices under semiarid ecoregions include dual systems that grow wheat (Triticum aestivum L.) for both grain and grazing (G) and recently complementary to wheat dual systems, cover crops (CC) for feeding both the soil and cattle during the fallow period. The latter continues to generate interest and there is a paucity of information on associated biochemical cycles. The objective was to evaluate the impact of CC and grazing thereof on soil microbiota structure, diversity, proliferation, and nutrient cycling. Introducing CC to no‐till (NT [NTC]) and grazing CC (NTCG [ICLS]), increased total PLFA biomass (TPB) for ungrazed CC (NTC) by 12%, and grazed CC (NTCG [ICLS]) by 20%; total bacteria biomass (TBB) by 10% for NTC and 24% for NTCG; total fungal biomass (TFB) by 9% for NTC and 21% for NTCG. The CC significantly increased Gram (−) bacteria biomass by 17% and 34% for NTC and NTCG, respectively; the CC significantly increased Gram (+) bacteria biomass by 6% and 12% for NTC and NTCG, respectively; and the CC significantly increased arbuscular mycorrhizal fungi by 55% and 89% for NTC and NTCG respectively, compared to NT fallow practice. Significant correlations were observed for NO3–N, NH4+–N, water‐extractable organic nitrogen, total nitrogen, and water‐extractable organic carbon with TPB, TBB, and TFB using Haney soil health methods. Based on the measured parameters, the soil health status decreased in the order NTCG > NTC > NT > CT, where NT is the no‐till, C is the cover crop, G is the grazing, and CT is the conventional‐till. Grazing CC enhanced soil bacterial biomass over CC in solitude.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3