Soil, climate, and variety impact on quantity and quality of maize root mucilage exudation

Author:

Nazari MeisamORCID,Bilyera Nataliya,Banfield Callum C.,Mason-Jones Kyle,Zarebanadkouki Mohsen,Munene Rosepiah,Dippold Michaela A.

Abstract

Abstract Aims This study investigated the influence of climate and soil on the exudation rate and polysaccharide composition of aerial nodal root mucilage from drought-resistant and drought-susceptible maize varieties. Methods Two maize varieties were grown in two different soils (sandy-clay loam Acrisol and loam Luvisol) under simulated climatic conditions of their agroecological zones of origin in Kenya and Germany. The exudation rate of mucilage from the aerial nodal roots was quantified as dry weight per root tip per day and the mucilage was characterized for its polysaccharide composition. Results On average, the mucilage exudation rate was 35.8% higher under the Kenyan semi-arid tropical than under the German humid temperate climatic conditions. However, cultivation in the loam Luvisol soil from Germany led to 73.7% higher mucilage exudation rate than cultivation in the sandy-clay loam Acrisol soil from Kenya, plausibly due to its higher microbial biomass and nutrient availability. The drought-resistant Kenyan maize variety exuded 58.2% more mucilage than the drought-susceptible German variety. On average, mucilage polysaccharides were composed of 40.6% galactose, 26.2% fucose, 13.1% mannose, 11% arabinose, 3.5% glucose, 3.2% xylose, 1.3% glucuronic acid, and 1% an unknown uronic acid. Overall, significantly higher proportions of the uronic acids were found in the mucilage of the plants grown in the Kenyan sandy-clay loam soil and under the Kenyan semi-arid tropical climatic conditions. Conclusions Maize is able to enhance its mucilage exudation rate under warm climatic conditions and in soils of high microbial activity to mitigate water stress and support the rhizosphere microbiome, respectively. Graphical abstract

Funder

Deutsche Bundesstiftung Umwelt

Robert Bosch Stiftung

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3