Water acquisition, sharing and redistribution by roots: applications to agroforestry systems

Author:

Bayala J.ORCID,Prieto I.

Abstract

Abstract Aims In the face of problems caused by ‘intensive agriculture’ dominated by large areas of monocultures, mixed intercropping mimicking natural ecosystems has been reported to constitute a viable solution to increase and stabilize productivity. When designing such systems, root niche separation was thought to be a prerequisite to optimize production. Methods This paper reviews the beneficial and adverse effects of trees and crops on water acquisition and redistribution in agroforestry ecosystems using the concepts of competition and facilitation between plants in link with root functional traits. Results The results of the review showed that the reality was more complex leading agroforestry practitioners to adopt management practices to induce a separation in root activities thus avoid competition, particularly for water. Water uptake by plant roots is triggered by the water potential difference between the soil and the atmosphere when leaf stomata are open and depends largely on the root exploration capacity of the plant. Thus, root water uptake dynamics are strongly related to root-length densities and root surface areas. In addition, plants with deep roots are able to lift up or redistribute water to the upper layers through a process known as hydraulic lift, potentially acting as “bioirrigators” to adjacent plants. The redistributed water could be of importance not only in regulating plant water status, e.g. by enhancing transpiration, but also in increasing the survival and growth of associated crops in mixed systems. Conclusions Even though some more work is still needed to assess the volume of water transferred to neighbors, hydraulic lift could constitute an ecological viable mechanism to buffer against droughts and ensure productivity in regions with erratic rainfall. Giving the difficulty in measuring the above-mentioned aspects in the field, modeling of some of the most relevant parameters to quantify them might inform the design of future empirical studies.

Funder

FTA

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3