Abstract
Abstract
Aims
Grassland-to-shrubland transition is a common form of land degradation in drylands worldwide. It is often attributed to changes in disturbance regimes, particularly overgrazing. A myriad of direct and indirect effects (e.g., accelerated soil erosion) of grazing may favor shrubs over grasses, but their relative importance is unclear. We tested the hypothesis that topsoil “winnowing” by wind erosion would differentially affect grass and shrub seedling establishment to promote shrub recruitment over that of grass.
Methods
We monitored germination and seedling growth of contrasting perennial grass (Bouteloua eriopoda, Sporobolus airoides, and Aristida purpurea) and shrub (Prosopis glandulosa, Atriplex canescens, and Larrea tridentata) functional groups on field-collected non-winnowed and winnowed soils under well-watered greenhouse conditions.
Results
Non-winnowed soils were finer-textured and had higher nutrient contents than winnowed soils, but based on desorption curves, winnowed soils had more plant-available moisture. Contrary to expectations, seed germination and seedling growth on winnowed and non-winnowed soils were comparable within a given species. The N2-fixing deciduous shrub P. glandulosa was first to emerge and complete germination, and had the greatest biomass accumulation of all species.
Conclusions
Germination and early seedling growth of grasses and shrubs on winnowed soils were not adversely nor differentially affected comparing with that observed on non-winnowed soils under well-watered greenhouse conditions. Early germination and rapid growth may give P. glandulosa a competitive advantage over grasses and other shrub species at the establishment stage in grazed grasslands. Field establishment experiments are needed to confirm our findings in these controlled environment trials.
Funder
USA National Science Foundation
the Jornada Basin Long Term Ecological Research Program
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Soil Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献