Measuring the Diurnal Variation of Root Conductance in Olive Trees Using Microtensiometers and Sap Flow Sensors

Author:

Villalobos Francisco J.,Testi Luca,García-Tejera Omar,López-Bernal ÁlvaroORCID,Tejado Inés,Vinagre Blas M.

Abstract

Abstract Background and aims Understanding the variation of root hydraulic conductance (Lp) is critical for the simulation of the soil–plant-atmosphere continuum (SPAC), but its monitoring remains challenging. In this study, we introduce a new non-destructive method for characterizing Lp dynamics in woody species through the combination of simultaneous determinations of sap flow and xylem water potential. Recent studies indicate that modern microtensiometers provide robust estimates of xylem water potential, but it is unknown whether they allow tracking rapid changes in water potential without significant time lags, which may have implications for the proposed methodology. Methods The impulse response of microtensiometers was measured in the lab, developing a procedure for correcting sensor data by deconvolution. Then, microtensiometers and compensation heat pulse sensors were used to evaluate the variations in Lp in two well-watered olive trees during the summer of 2022 in Cordoba, Spain. Results Correcting microtensiometer outputs was critical to analyze our field data as strong stomatal oscillations occurred, with microtensiometers damping xylem water potential variations. By contrast, our results suggest that correction procedures may not be required for many practical applications like irrigation scheduling. The daytime values of Lp were close to those obtained in previous studies, while nighttime values were extremely low. Therefore, a proportionality between Lp and sap flow rate was observed, which agrees with previous studies, although it does not prove a causal relationship. Conclusions The methods proposed here could be applied to studying the temporal dynamics of root hydraulic conductance in other tree species.

Funder

Ministerio de Ciencia e Innovación

Junta de Andalucía

Ministerio de Universidades

Universidad de Córdoba

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3