Abstract
Stem water potential (Ψstem) is considered to be the standard measure of plant water status. However, it is measured with the pressure chamber (PC), an equipment that can neither provide continuous information nor be automated, limiting its use. Recent developments of microtensiometers (MT; FloraPulse sensors), which can continuously measure water tension in woody tissue of the trunk of the tree, can potentially highlight the dynamic nature of plant water relations. Thus, this study aimed to validate and assess the usefulness of the MT by comparing the Ψstem provided by MT with those same measurements from the PC. Here, two irrigation treatments (a control and a deficit treatment) were applied in a pear (Pyrus communis L.) orchard in Washington State (USA) to capture the full range of water potentials in this environment. Discrete measurements of leaf gas exchange, canopy temperature and Ψstem measured with PC and MT were made every two hours for four days from dawn to sunset. There were strong linear relationships between the Ψstem-MT and Ψstem-PC (R2 > 0.8) and with vapor pressure deficit (R2 > 0.7). However, Ψstem-MT was more variable and lower than Ψstem-PC when Ψstem-MT was below −1.5 MPa, especially during the evening. Minimum Ψstem-MT occurred later in the afternoon compared to Ψstem-PC. Ψstem showed similar sensitivity and coefficients of variation for both PC and MT acquired data. Overall, the promising results achieved indicated the potential for MT to be used to continuously assess tree water status.
Funder
United States Department of Agriculture
Washington State Tree Fruit Research Commission
Fundación Seneca
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献