Abstract
Abstract
Aims
Visualization of enzymatic activity links microbial functioning to localization in heterogeneous soil habitats. To assess enzymatic reactions in soil thin layer at the microscopic level, we developed a micro-zymography approach and tested it by visualization of the potential activity of phosphomonoesterase for aggregates collected from the rhizosphere of Zea mays L.
Methods
We evaluated micro-zymography by applying fluorogenically-labeled substrate i) on individual soil aggregates freshly sampled from the rhizosphere, ii) on thin layers of aggregates (≈ 500 µm) saturated with substrate to assess the dynamics of phosphomonoesterase activity, and iii) on maize roots under laser scanning microscope upon the identified hotspots by membrane-based zymography.
Results
We found super transparent silicon as the most appropriate fixative to prevent sample drying. We optimized microscope settings to eliminate the soil auto-fluorescence. The fluorescent signal shifted from the free liquid phase towards the aggregate boundaries within 30 min after substrate addition and was finally detectable at the surface of a few aggregates. This was probably due to higher microbial abundance and enzymatic activity on the soil aggregates compared to the liquid phase. The enzymatic activity appeared patchy at the aggregate and root surfaces indicating heterogeneous distribution of hotspots.
Conclusions
The methodology including calibration, sample preparation, fixation, and monitoring was developed. The novel membrane-free micro-zymography approach is a promising tool to identify functional specificity and niche differentiation on roots and soil aggregates. This approach revealed unexplained complexity of competing processes (biochemical, hydrolytic, and physical) due to differently charged reaction products and enzyme-clay complexes.
Funder
Deutsche Forschungsgemeinschaft
Helmholtz-Zentrum für Umweltforschung GmbH - UFZ
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Soil Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献