Amino mapping: possibility to visualize amino-N compounds in the rhizosphere of Zea Mays L.

Author:

Khosrozadeh Sajedeh,Guber Andrey,Nourbakhsh Farshid,Khalili Banafshe,Blagodatskaya EvgeniaORCID

Abstract

AbstractUnderstanding N uptake by plants, the N cycle, and their relationship to soil heterogeneity has generated a great deal of interest in the distribution of amino-N compounds in soil. Visualization of the spatial distribution of amino-N in soil can provide insights into the role of labile N in plant-microbial mechanisms of N acquisition and plant N uptake, but until now, it has remained technically challenging. Here, we describe a novel technique to visualize the amino-N distribution at the root-soil interface. The technique is based on time-lapse amino mapping (TLAM) using membranes saturated with the fluorogenic OPAME reagent (O-phthalaldehyde and β-mercaptoethanol). OPAME in the membrane reacts with organic compounds containing a NH2 functional group at the membrane-soil interface, generating a fluorescent product visible under UV light and detectable by a digital camera. The TLAM amino-mapping technique was applied to visualize and quantify the concentration of amino-N compounds in the rhizosphere of maize (Zea Mays L.). A ten times greater amino-N concentration was detected in the rhizosphere compared to non-rhizosphere soil. The high content of amino-N was mainly associated with the root tips and was 3 times larger than the average amino-N content at seminal roots. The amino-N rhizosphere was 2 times broader around the root tips than around other parts of the roots. We concluded that TLAM is a promising approach for monitoring the fate of labile N in soils. However, the technique needs to be standardized for different soil types, plant species, and climate conditions to allow wider application.

Funder

Deutsche Forschungsgemeinschaft

Helmholtz-Zentrum für Umweltforschung GmbH - UFZ

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Agronomy and Crop Science,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3