Improving the remote estimation of soil organic carbon in complex ecosystems with Sentinel-2 and GIS using Gaussian processes regression

Author:

Ayala Izurieta Johanna ElizabethORCID,Jara Santillán Carlos ArturoORCID,Márquez Carmen OmairaORCID,García Víctor JulioORCID,Rivera-Caicedo Juan PabloORCID,Van Wittenberghe ShariORCID,Delegido JesúsORCID,Verrelst JochemORCID

Abstract

Abstract Background and aims The quantitative retrieval of soil organic carbon (SOC) storage, particularly for soils with a large potential for carbon sequestration, is of global interest due to its link with the carbon cycle and the mitigation of climate change. However, complex ecosystems with good soil qualities for SOC storage are poorly studied. Methods The interrelation between SOC and various vegetation remote sensing drivers is understood to demonstrate the link between the carbon stored in the vegetation layer and SOC of the top soil layers. Based on the mapping of SOC in two horizons (0–30 cm and 30–60 cm) we predict SOC with high accuracy in the complex and mountainous heterogeneous páramo system in Ecuador. A large SOC database (in weight % and in Mg/ha) of 493 and 494 SOC sampling data points from 0–30 cm and 30–60 cm soil profiles, respectively, were used to calibrate GPR models using Sentinel-2 and GIS predictors (i.e., Temperature, Elevation, Soil Taxonomy, Geological Unit, Slope Length and Steepness (LS Factor), Orientation and Precipitation). Results In the 0–30 cm soil profile, the models achieved a R2 of 0.85 (SOC%) and a R2 of 0.79 (SOC Mg/ha). In the 30–60 cm soil profile, models achieved a R2 of 0.86 (SOC%), and a R2 of 0.79 (SOC Mg/ha). Conclusions The used Sentinel-2 variables (FVC, CWC, LCC/Cab, band 5 (705 nm) and SeLI index) were able to improve the estimation accuracy between 3–21% compared to previous results of the same study area. CWC emerged as the most relevant biophysical variable for SOC prediction.

Funder

European Research Council

Universitat de Valencia

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3