Effects of Land Use and Topographic Position on Soil Organic Carbon and Total Nitrogen Stocks in Different Agro-Ecosystems of the Upper Blue Nile Basin

Author:

Abebe Getu,Tsunekawa AtsushiORCID,Haregeweyn NigussieORCID,Takeshi Taniguchi,Wondie MenaleORCID,Adgo EnyewORCID,Masunaga TsugiyukiORCID,Tsubo Mitsuru,Ebabu Kindiye,Berihun Mulatu LiyewORCID,Tassew Asaminew

Abstract

Soil organic carbon (SOC) and total nitrogen (TN) are key ecological indicators of soil quality in a given landscape. Their status, especially in drought-prone landscapes, is associated mainly with the land-use type and topographic position. This study aimed to clarify the effect of land use and topographic position on SOC and TN stocks to further clarify the ecological processes occurring in the landscape. To analyze the status of SOC and TN, we collected 352 composite soil samples from three depths in the uppermost soil (0–50 cm) in four major land-use types (bushland, cropland, grazing land, and plantation) and three topographic positions (upper, middle, and lower) at three sites: Dibatie (lowland), Aba Gerima (midland), and Guder (highland). Both SOC and TN stocks varied significantly across the land uses, topographic positions, and agro-ecosystems. SOC and TN stocks were significantly higher in bushland (166.22 Mg ha−1) and grazing lands (13.11 Mg ha−1) at Guder. The lowest SOC and TN stocks were observed in cropland (25.97 and 2.14 Mg ha−1) at Aba Gerima, which was mainly attributed to frequent and unmanaged plowing and extensive biomass removal. Compared to other land uses, plantations exhibited lower SOC and TN stocks due to poor undergrowth and overexploitation for charcoal and firewood production. Each of the three sites showed distinct characteristics in both stocks, as indicated by variations in the C/N ratios (11–13 at Guder, 10–21 at Aba Gerima, and 15–18 at Dibatie). Overall, land use was shown to be an important factor influencing the SOC and TN stocks, both within and across agro-ecosystems, whereas the effect of topographic position was more pronounced across agro-ecosystems than within them. Specifically, Aba Gerima had lower SOC and TN stocks due to prolonged cultivation and unsustainable human activities, thus revealing the need for immediate land management interventions, particularly targeting croplands. In a heterogeneous environment such as the Upper Blue Nile basin, proper understanding of the interactions between land use and topographic position and their effect on SOC and TN stock is needed to design proper soil management practices.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3