Refractive Index Sensing Simulations of CsPbBr3 Quantum Dots/Gold Bilayer Coated Triangular-Lattice Photonic Crystal Fibers

Author:

Tao Ye,Ye Han,Ding Yong,Ren Xiaomin,Liu Xiaolong

Abstract

AbstractWith the incorporation of noble metal materials, photonic crystal fibers (PCFs) could be performed as an effective platform for refractive index sensing of the filling analytes. Furthermore, by coating functional dielectric layers upon the metal surfaces, the resonance energy transfer is modulated from the core mode of the PCFs towards the surface plasmon resonance mode of the metals, and the sensing performance could be boosted. Here, considering that the exciton-plasmon coupling is efficient between perovskite quantum dots (QDs) and gold, a kind of CsPbBr3 QDs/Au bilayer coated triangular-lattice PCFs has been simulated numerically as the refractive index sensors. With the optimization of the QDs and gold layer thicknesses, together with the variation of the central hole size of the PCFs, in the refractive index (RI) region of 1.26 to 1.34, a rather narrow full width at half maximum (FWHM) of the loss spectra was achieved as 13.74nm when the central hole size was 1.28 µm and the highest figure of merit was 63.79RIU (the central hole size was 1.53 µm). This work demonstrates that the analyte identification accuracy was enhanced by FWHM narrowing of the loss spectra; in addition, taking the abundance of the material choice of perovskite QDs into consideration, more analytes could be detected effectively. Moreover, by adopting asymmetric structures, the sensitivity of the PCFs based refractive index sensors could be further improved.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3