Abstract
AbstractTextures and whole-rock chemistry, as well as mineral composition, were analyzed in megaspherulites (high-temperature crystallization domains [HTCDs]) that formed in different geographical and geotectonic contexts and during different geological periods (Silver Cliff, CO, USA—Paleogene; El Quevar, Argentina—Miocene; Meissen Volcanic Complex, Germany—Late Carboniferous). All of these megaspherulites have formed exclusively in rhyolitic lava, and their mineral composition is dominated by K-feldspar (sanidine) and SiO2 phases (quartz, cristobalite, tridymite). All megaspherulites represent composite HTCDs, comprising three zones: inner domain (ID), outer domain (OD), and a marginal domain (MD). Early evolution of megaspherulites is characterized by either central cavities and sector- to full-sphere spherulites or dendritic quartz-sanidine domains. The latter consist of bundles of fibrils each radiating from a single point reflecting relatively high growth rates. A common feature of OD and MD of all three megaspherulite occurrences is autocyclic banding. It mainly comprises fibrous (≤ 100 μm length), radially oriented sanidine and quartz, which formed at a temperature close to glass transition temperature (Tg). The termination of megaspherulite growth is marked by centimeter-sized sector-sphere spherulites on the surface. Megaspherulite formation requires limited nucleation, which is probably related to the low phenocryst content of the hosting lava. Latent heat from overlying crystallizing lithoidal rhyolite maintained low undercooling conditions keeping nucleation density low and facilitating high diffusion and growth rates. Late megaspherulite growth and its termination under low diffusion conditions is controlled by cooling close to Tg. Calculations based on literature data suggest that the megaspherulite growth presumably lasted less than 60 years, perhaps 30 to 40 years.
Publisher
Springer Science and Business Media LLC
Subject
Geochemistry and Petrology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献