Effects of Fins Base Rounding on Heat Transfer Characteristics of Absorber Tube of Parabolic Trough Collector

Author:

Fatouh M.,Saad Nourhan,Abdala Antar M. M.

Abstract

AbstractIn this study, the heat transfer characteristics of an improved absorber tube of parabolic trough solar collector LS-2 are investigated using ANSYS software. Oil syltherm 800 type is used as a heat transfer fluid. Three types of absorber tubes are tested; the first is a smooth tube and the others are finned tubes. One of the rough cases is rectangular cross-section fins with rounding at fin base and the other does not have rounding at fin base. Simulations are performed with fin thickness variations of 2, 4 and 6 mm. The fin lengths change at 5, 10, 15, 20 and 25 mm. The radii of rounding are 2, 3 and 4 mm and angles between fins are 45° and 90°. Wide range of operating parameters is considered, such as inlet fluid temperatures (300:600 K), flow rate (6:24 m3/h) and direct normal irradiance (500:1000 W/m2). The thermal efficiency, Nusselt number and thermal enhancement index are calculated under different operating conditions. The results show that thermal enhancement index of the fin with round edge radius of 4 mm is higher than that of the fin with the sharp edge (R = 0 mm) by about 10.74% under the considered conditions. The thermal enhancement index of the round edge fins with a length of 25 mm is nearly 25.6% higher than that of the round edge fins with a length of 5 mm. At a fin thickness of 6 mm, the thermal enhancement index of the round edge fin is nearly 7.8% higher than that of the sharp edge fin. At 45° angle and 25-mm fin length, the thermal enhancement index for round and sharp-edged fins is 1.644 and 1.532, respectively. When the inlet fluid temperature increased from 300 to 600 K, the heat enhancement index value increased by 14.57%; as the flow rate increased from 6 to 12 m3/h, the heat enhancement index value decreased by 11.63%. The thermal enhancement index increased from 1.265 to 1.359 as the direct normal irradiance varied from 500 to 700 W/m2.

Funder

Helwan University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3