Application of KRR, K-NN and GPR Algorithms for Predicting the Soaked CBR of Fine-Grained Plastic Soils

Author:

Verma Gaurav,Kumar Brind,Kumar Chintoo,Ray Arunava,Khandelwal ManojORCID

Abstract

AbstractCalifornia bearing ratio (CBR) test is one of the comprehensive tests used for the last few decades to design the pavement thickness of roadways, railways and airport runways. Laboratory-performed CBR test is considerably rigorous and time-taking. In a quest for an alternative solution, this study utilizes novel computational approaches, including the kernel ridges regression, K-nearest neighbor and Gaussian process regression (GPR), to predict the soaked CBR value of soils. A vast quantity of 1011 in situ soil samples were collected from an ongoing highway project work site. Two data divisional approaches, i.e., K-Fold and fuzzy c-means (FCM) clustering, were used to separate the dataset into training and testing subsets. Apart from the numerous statistical performance measurement indices, ranking and overfitting analysis were used to identify the best-fitted CBR prediction model. Additionally, the literature models were also tried to validate through present study datasets. From the results of Pearson’s correlation analysis, Sand, Fine Content, Plastic Limit, Plasticity Index, Maximum Dry Density and Optimum Moisture Content were found to be most influencing input parameters in developing the soaked CBR of fine-grained plastic soils. Experimental results also establish the proficiency of the GPR model developed through FCM and K-Fold data division approaches. The K-Fold data division approach was found to be helpful in removing the overfitting of the models. Furthermore, the predictive ability of any model is considerably influenced by the geological location of the soils/materials used for the model development.

Funder

Federation University Australia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3