Can machine learning models predict soil moisture evaporation rates? An investigation via novel feature selection techniques and model comparisons

Author:

Priyanka Priyanka,Kumar Praveen,Panda Sucheta,Thakur Tejinder,Uday K. V.,Dutt Varun

Abstract

Extreme weather events and global climate change have exacerbated the problem of evaporation rates. Thus, accurately predicting soil moisture evaporation rates affecting soil cracking becomes crucial. However, less is known about how novel feature engineering techniques and machine-learning predictions may account for estimating the soil moisture evaporation rate. This research focuses on predicting the evaporation rate of soil using machine learning (ML) models. The dataset comprised twenty-one ground-based parameters, including temperature, humidity, and soil-related features, used as features to predict evaporation potential. To tackle the high number of features and potential uncorrelated features, a novel guided backpropagation-based feature selection technique was developed to rank the most relevant features. The top-10 features, highly correlated with evaporation rate, were selected for ML model input, alongside the top-5 and all features. Several ML models, including multiple regression (MR), K-nearest neighbor (KNN), multilayer perceptron (MLP), sequential minimal optimization regression (SMOreg), random forest (RF), and a novel K-Nearest Oracles (KNORA) ensemble, were constructed for the purpose of forecasting the evaporation rate. The average error of these models was assessed using the root mean squared error (RMSE). Experimental results showed that the KNORA ensemble model performed the best, achieving a 7.54 mg/h RMSE in testing with the top-10 features. MLP was followed closely by a 25.1 mg/h RMSE in the same testing. An empirical model using all features showed a higher RMSE of 1319.1 mg/h, indicating the superiority of the ML models for accurate evaporation rate predictions. We highlight the implications of our results for climate-induced soil cracking in the real world.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3