Adsorption and Photo-Fenton Degradation of Methylene Blue Using Nanomagnetite/Potassium Carrageenan Bio-Composite Beads

Author:

Hassan Asaad F.ORCID,Mustafa Ahmed A.,Esmail Ghada,Awad Aya M.

Abstract

AbstractThe present study deals with the preparation of nanomagnetite (NM), potassium carrageenan (KC), and nanomagnetite/potassium carrageenan bio-composite beads (NC). Characterization of the prepared solid materials using different physicochemical techniques such as X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscope (TEM), energy-disperse X-ray spectroscopy (EDX), diffuse reflectance spectrophotometer (DRS), swelling ratio (SR%), N2 adsorption, pH of point of zero charges (pHPZC), and Fourier transform infrared spectroscopy (FTIR). Comparing between adsorption and photo-Fenton degradation process for methylene blue (MB) on the surface of the prepared solid materials. Nanomagnetite/potassium carrageenan bio-composite (NC) exhibited high specific surface area (406 m2/g), mesoporosity (pore radius, 3.64 nm), point of zero charge around pH6.0, and the occurrence of abundant oxygen-containing functional groups. Comparison between adsorption and photo-Fenton oxidation process for methylene blue (MB) was carried out under different application conditions. NC exhibited the maximum adsorption capacity with 374.50 mg/g at 40 °C after 24 h of shaking time while 96.9% of MB was completely degraded after 20 min of photo-Fenton process. Langmuir's adsorption model for MB onto the investigated solid materials is the best-fitted adsorption model based on the higher correlation coefficient values (0.9771–0.9999). Kinetic and thermodynamic measurements prove that adsorption follows PSO, endothermic, and spontaneous process, while photo-Fenton degradation of MB achieves PFO, nonspontaneous, and endothermic process. Photo-Fenton degradation is a fast and simple technique at a lower concentration of dye (< 40 mg/L) while at higher dye concentration, the adsorption process is preferred in the removal of that dye.

Funder

Damanhour University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3